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Recent advances in connectomics have led to a synthesis of perspectives regarding the brain’s functional
organization that reconciles classical concepts of localized specialization with an appreciation for properties
that emerge from interactions across distributed functional networks. This provides a more comprehensive
framework for understanding neural mechanisms of normal cognition and disease. Although fMRI has not
become a routine clinical tool, research has already had important influences on clinical concepts guiding
diagnosis and patient management. Here we review illustrative examples. Studies demonstrating the
network plasticity possible in adults and the global consequences of even focal brain injuries or disease
both have had substantial impact on modern concepts of disease evolution and expression. Applications
of functional connectomics in studies of clinical populations are challenging traditional disease classi-
fications and helping to clarify biological relationships between clinical syndromes (and thus also ways of
extending indications for, or ‘‘re-purposing,’’ current treatments). Large datasets from prospective, longitu-
dinal studies promise to enable the discovery and validation of functional connectomic biomarkers with the
potential to identify people at high risk of disease before clinical onset, at a time when treatments may be
most effective. Studies of pain and consciousness have catalyzed reconsiderations of approaches to clinical
management, but also have stimulated debate about the clinical meaningfulness of differences in internal
perceptual or cognitive states inferred from functional connectomics or other physiological correlates. By
way of a closing summary, we offer a personal view of immediate challenges and potential opportunities
for clinically relevant applications of fMRI-based functional connectomics.
Introduction
Historically, there has been a conceptual division in clinical

neuroscience between localist and distributed processing per-

spectives on brain function. The former are derived from clas-

sical lesion studies, which, in the tradition of Charcot, view the

brain as a set of discrete processing modules. The latter are

derived from theories of equipotentiality, which, in accordance

with views popularized by the Harvard physiologist Karl Lashley,

view the brain in terms of distributed functions. Localist models

represent a natural extension of traditional interpretations of neu-

ropsychological studies after focal lesions. They remain useful

for clinical diagnosis, e.g., for recognizing and localizing strokes

or brain tumors withmajor acute deficits of motor or primary sen-

sory systems. However, in recent years, distributed processing

models have proven more powerful for explaining complex

cognitive functions, their individual variation, and the behavioral

expression particularly of more generalized pathologies in

neurological and psychiatric diseases (e.g., cognitive impair-

ments with diffuse small vessel disease [Dey et al., 2016; Schae-

fer et al., 2014b]) and generalized inflammatory diseases such as

HIV (Ann et al., 2016), or for discrimination between the overlap-

ping symptom presentations of bipolar disease and depression

(Jie et al., 2015).

Much has been written about how structural connectomics

has contributed to the discrimination or understanding of neuro-

logical and psychiatric diseases. Recent work has explored how

brain structural connectomic principles help to explain key as-
pects of disease expression or brain resilience (Fornito et al.,

2015). To complement this, our focus in this review will be on

the clinical relevance of fMRI functional connectomics. We will

briefly outline evidence for two fundamental concepts central

to clinical applications: how individual variation can be charac-

terized, and how this variation is related to cognition and

behavior. We then will discuss applications having a current or

developing impact on medical practice. Finally, we will reflect

on challenges to realizing this impact more comprehensively

and rapidly. To cover such a wide range of topics, our approach

necessarily has been selective.

One of us reviewed clinical applications of fMRI early in this

millennium (Matthews et al., 2006), but applications of functional

connectomics have progressed rapidly since. Important founda-

tions for extension of these toward problems in clinical medicine

include the observations that distributed spatiotemporal

network organization is reproducible across subjects (Damoi-

seaux et al., 2006) and that network components are relevant

to behavior (Smith et al., 2009). There has been a convergence

of complementary insights from studies that have used other

techniques, such as MRI arterial spin labeling, [18F]-Fluorodeox-

yglucose PET, or electrophysiological methods (e.g., electroen-

cephalography [EEG] or magnetoencephalography [MEG])

(Brookes et al., 2011). However, fMRI may be unique insofar as

it is widely accessible, directly links functional with structural

brain measures, and is practical to implement in many clinical

contexts.
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Relationships between regional human brain anatomy and

different behaviors classically were based on clinical-patholog-

ical associations made in studies of patients suffering from brain

diseases or brain injuries that impaired behaviors or psycholog-

ical functions. The hypothesis that structural connectomics can

explain relationships between brain lesions and associated

behavioral impairments is not new (Fornito et al., 2015). For

example, the ideas of ‘‘réseau de cellules anastomosées,’’

positing that brain regions sub-serving the same function are

connected (Koehler, 1996), and of connectional diaschisis

(Carrera and Tononi, 2014) have been influential for decades.

Diagnostic approaches to language impairments based on

connectional models that use clinical signs to localize lesions

either to functionally specialized regions (nodes) or to their

disconnection have been among the core canons of behavioral

neurology throughout its modern era (Lichtheim, 1885). Specific

variants of the concept also have been important in the context

of generalized epilepsies or the disconnexion syndrome (Catani

and ffytche, 2005). Recent work extends these concepts in

structured or quantitative frameworks that can be applied across

levels of spatiotemporal organization (Bullmore and Sporns,

2009; Park and Friston, 2013).

Functional connectomics provides a related, but distinct, level

of description. A sign of its maturation has been the transition

from theoretical constructs that describe characteristics of brain

functional organization qualitatively to quantitativemeasures and

predictive models that are becoming practical for guiding clinical

diagnosis in disease or treatment monitoring. While we and

others have noted that fMRI has not been integrated into routine

clinical practice with anything like the speed that was seen with

the introduction of structural MRI three decades ago (Matthews

et al., 2006), we believe that advances in functional connectom-

ics have made important contributions. Here we selectively

review major conceptual insights from fMRI-based functional

connectomics that are contributing to a fuller understanding of

individual variation in brain-behavior relationships relevant to

clinical problems. We then describe examples of applications

of these ideas more directly in an illustrative range of clinical

applications, including patient assessment, pre-symptomatic

disease diagnosis, and the development of new treatments.

Finally, we offer a personal view of short- to medium-term chal-

lenges and opportunities for greater clinical impact from this

growing understanding of fMRI-based functional connectomics

in health and disease.

Properties of the Functional Connectome
Structural and Functional Connectivity of the Brain

Functional interactions throughout the brain are fundamentally

constrained by structural connectivity, so it is unsurprising that

there are significant correspondences between structural and

functional connectomes (Baria et al., 2013). Nonetheless,

macro-scale human functional connectomes derived from

human fMRI data offer additional descriptive power. These de-

scriptions can differ substantially from those of structural

connectomes. Some of these differences can be attributed triv-

ially to the distinct properties of these two descriptions. Strong

fMRI functional connectivity can be found between brain areas

that lack direct structural connections (Honey et al., 2009),
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e.g., as illustrated by the preserved inter-hemispheric motor

cortical functional connectivity in rhesus monkeys even after

sectioning direct callosal connections (O’Reilly et al., 2013). An

additional factor may be that structural connectomic models

developed from diffusion tensor MRI have spatial resolutions

that are orders of magnitude lower than needed to resolve in-

ter-neuronal connectivity: micro-scale circuitry determines local

information processing that also contributes substantially to

large-scale network dynamics (Gerits et al., 2012).

Correspondences between structure and function are ex-

pressed because of the general constraints that structure im-

poses on the range of functional states that can be assumed,

although functional connectional interactions are much more

dynamic than those of the structural connectome (even allowing

for high synaptic turnover and remodeling) (Chen et al., 2014).

The architecture of the functional connectome converges over

time on an average (steady-state) set of interactions, but is intrin-

sically dynamic (Baker et al., 2014). A comprehensive illustration

was given by comparison of resting-state functional connectivity

derived from BOLD-fMRI in macaques (Macaca fascicularis)

to structural connectivity derived from macaque axonal tract

tracing studies. Correspondences between these descriptions

increased with the duration over which the resting-state correla-

tions were sampled (Shen et al., 2015).

Functional Connectomic Dynamics: Measures or State

and Trait?

Task-based fMRI studies are designed to determine differences

between brain states that are expressed during specific pro-

cessing conditions. When sampled with greater temporal resolu-

tion, the functional connectome also provides measures of

transient or dynamic states that relate to specific internal states

of mind (Spiers and Maguire, 2007). By contrast, functional con-

nectivity assessed over longer periods of rest providesmeasures

that may relate more to trait. The now large body of literature

defining steady-state, resting-state functional networks thus of-

fers a basis for understanding traits that distinguish individuals or

diseases (De Luca et al., 2006; Smith et al., 2009).

Considerable attention has been placed on mapping brain

functional-anatomical networks to understand how individual

differences in their persistent (traits) or transient (states) interac-

tions relate to behavioral variability and disease. Steady-state

measures of inter-network coupling are associated with normal

and pathological variability in cognition, for example (Geerligs

et al., 2015). The potential range of these dynamic spatiotem-

poral interactions differentiates networks and their functional

roles for enabling behavior (de Pasquale et al., 2012). For

example, the fronto-parietal brain network shows particularly

highly variable functional connectional architectures across

brain states associated with different tasks (Cole et al., 2013b),

consistent with a flexible resource that combines processing

across various brain regions to support the broad range of

behavioral demands needed in everyday life (Duncan, 2001).

Despite the low-pass filter of neurovascular coupling, resting-

state fMRI reflects rapid, coordinated spontaneous activity un-

derpinning connectivity within and between functional networks

(Baker et al., 2014). This activity varies dynamically around a sta-

ble or slowly changing mean state, highlighting a fundamental

principle of brain functional architecture: in order to maintain



Figure 1. Dissociable Roles of Fronto-Parietal Cortex Component
Networks
(A) A set of brain regions are commonly activated when a very broad range of
cognitive task demands are manipulated (left panel). These are often referred
to asmultiple demand (MD) cortex (Duncan and Owen, 2000; Fedorenko et al.,
2013). They include an area of the lateral frontal cortex centered on the inferior
frontal sulcus (IFS), anterior insula extending into the frontal operculum (AIFO),
anterior cingulate and pre-supplementary motor area, and inferior parietal
cortex. MD cortex is strongly active during the performance of novel or
complex demands such as the stop signal task (right panel) (Erika-Florence
et al., 2014), but becomes less active when the same task has been practiced.
(B) Although MD cortex has a broad response to cognitive tasks, it houses
component networks that respond most strongly to different demands (upper
figure) (Hampshire et al., 2012). Tasks that tend to activate one or other MD
component network also tend to load onto the same behavioral psychometric
factors (lower figure).
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the potential to adapt rapidly to changing demands, a network

must operate at the ‘‘edge of chaos’’ to enable flexible shifts be-

tween the transient processing states (Beggs, 2008). Patterns of

activity that distinguish different mental states reflect very small

differences relative to total brain energy expenditure (Raichle

and Mintun, 2006; Shulman et al., 2014). The brain’s functional

connectomic dynamics thus can be modeled as a set of alterna-
tive network activation states, each of which is close to destabi-

lization (Deco et al., 2013; Hellyer et al., 2014). At the same time,

dynamic variations within or between functionally connective el-

ements is constrained (metastable). Extensions of such models

enable quantitative, in silico hypotheses to be generated

regarding the potential influence of diverse factors on network

behaviors, e.g., the molecular events and synaptic activity that

underlie conductance changes sub-serving neural information

processing (Markram et al., 2015).

Expression of brain functional connectomics in terms of dy-

namic spatiotemporal models provides a quantitative framework

that can reconcile localist and distributed views of the brain.

From this perspective, the brain is viewed as having a functional

architecture built from nodes that show variable functional con-

nectivity with other nodes. In the healthy brain, these nodes func-

tion as elements within highly interactive networks responsible

for cognitive information processing. Some nodes are special-

ized for local processing (e.g., in primary sensory or motor cortex

or, for expressive language, in the posterior superior temporal

gyrus [BA 22] and the pars operculis/pars triangularis of the infe-

rior frontal gyrus [BA 44 or 45]). Others (e.g., lateral prefrontal

cortical nodes with high topological centrality) perform more

general functions to modulate global network activities for

control of cognitive states (Koechlin et al., 2003). For example,

Hellyer et al. showed that richly connected network hubs in

the fronto-parietal control/dorsal attention or the posterior

cingulate-precuneas/anterior cingulate/default mode networks

(Hellyer et al., 2014) modulate the metastability of networks

more globally. These features create a nested architecture asso-

ciated with variable correlations within and between networks.

Results of these analyses can be expressed in terms of average

correlation strengths (defining hypotheses for determinants of

traits) or as fluctuations and directed connectivities that change

over time with shifting task demands (defining hypotheses for

determinants of states). These expressions allow dysfunction

or injury to systems with disease to be quantified as multivariate

measures of the interactions between key nodes and networks.

Explaining Individual Variation with Disease through the
Functional Connectome
A brief review of observations made of fronto-parietal networks

provides good illustrations of how functional connectomic traits

and states relate to individual cognitive variation. These illustra-

tions also have broad clinical relevance; sub-regions within the

frontal-parietal cortex co-activate during diverse cognitive tasks

(Duncan and Owen, 2000) (Figure 1). In patients studied after

focal lesions (e.g., from strokes), core cognitive abilities are

reduced in direct proportion to the extent of damage to the fron-

tal (lateral and dorsomedial) and mid-parietal cortex (Woolgar

et al., 2010). While the individual networks within fronto-parietal

cortex often activate together, functional dissociations with

different task demands demonstrate that they have distinct roles

in cognitive processing (Hampshire and Owen, 2006; Smith

et al., 2009). These functional dissociations correlate with the

behavioral latent variables that explain population variability in

cognitive ability. The constituent networks of the fronto-parietal

cortex provide a framework for quantitative, functional connec-

tomic models predicting the different cognitive impairments
Neuron 91, August 3, 2016 513
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associated with such differences in the distribution of patho-

logical changes, e.g., as illustrated by studies of Parkinson’s

disease (Nombela et al., 2014).

Analogous approaches relying on functional connectomic

mapping and analyses of individual nodes or network activity

have contributed to explaining individual differences in other as-

pects of cognition (seeMcNab and Klingberg, 2008; Mukai et al.,

2007; Tom et al., 2007; Wig et al., 2008). This can be more com-

plex than simply assessing relative correlations across a canon-

ical set of networks, as functional networks may show variable

topologies in different people. Models based on one-to-one

mappings between patterns of fMRI brain activation and

behavior are overly-simplistic. Individuals can apply different

cognitive strategies and, thereby, assume different functional

connectivity states when performing the same task; the func-

tional architecture of individual cognitive processing networks

is not necessarily fixed across the whole population. For

example, Seghier et al. described distinguishable correlated

activations alternatively of left inferior frontal and anterior occi-

pito-temporal regions or right inferior parietal and left posterior

occipito-temporal cortex while different subjects read familiar

words, suggesting physiologically distinct cognitive strategies

for reading (Seghier et al., 2008). In another example, Kraemer

et al. asked study participants to perform a task involving both

word-based and picture-based feature matching. They found

modality-specific correlated cortical activities that distinguished

individuals who used either predominantly visual or verbal cogni-

tive strategies (Kraemer et al., 2009). Accounting for the potential

heterogeneity in such mappings is a key challenge for confident

clinical application of fMRI functional connectomics.

A growing trend in the study of individual differences is toward

evaluating networks using data-driven models that can account

for generalizable aspects of this heterogeneity. In a pioneering

example of this, Smith and colleagues explored correlations be-

tween resting-state network connectivities and a wide range of

demographic, psychometric, and clinical measures for a large-

scale population of volunteers in the Human Connectome Proj-

ect (HCP) (Smith et al., 2015; Van Essen et al., 2013). They

used group independent components analysis (ICA) to define a

consensus brain parcellation from resting-state fMRI data and

then applied canonical correlation analysis (CCA) across the in-

dividual subject measures to identify common modes of varia-

tion between the two sets of data. A single statistically significant

CCA mode was identified. This was reported to be related most

strongly (r = 0.87) to default mode network connectivity. Individ-

ual subject phenotypic measures also were correlated with this

mode (r = �0.2–0.4). These appeared to cluster into distinct

‘‘positive’’ (e.g., those with good health, higher IQ, and a safer

lifestyle) or ‘‘negative’’ (e.g., those who were less healthy, had

lower IQ, or higher risk lifestyle) axes, suggesting that it reflects

a common latent factor. This result is striking, although the

CCA mode explained only a very small percentage of the overall

variability in the individual subject measures (<2%). The low

explanatory power suggests either that the phenotypic mea-

sures selected do not represent modes of brain functional varia-

tion well or that important aspects of brain function that were not

considered here (e.g., dynamics of functional network interac-

tions [Cole et al., 2013b; Scott et al., 2015]) play dominant roles.
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Another early large population study reported by Rosenberg

and colleagues (Rosenberg et al., 2016) had similar general ob-

jectives, but focused specifically on brain functional associations

explaining attentional control, rather than a data-driven pheno-

typic construct. Mean (steady-state) coupling strengths were

calculated between anatomically parcellated sub-regions of

the brain. These mean couplings implicitly provide information

regarding connectional coupling both within and between net-

works. Using these measures, they generated a multivariate

model that predicted a more substantial component of variance

(r = �0.8, explaining �60%) in performance of a sustained

attention task. They validated their model by predicting task

performance based on the resting-state fMRI data. They then

demonstrated how themodel could be used tomake predictions

about clinical presentations by predicting symptom severity in an

attentional deficit hyperactivity patient cohort.

Together, the Smith and Rosenberg studies confirm that

cognitive and brain functional connectivity traits significantly

co-vary in healthy and clinical populations. They suggest that

such analyses may enable more general discovery of functional

connectomic states associated with specific behavioral symp-

toms or signs related to the expression of disease. They also

suggest that many individual subject characteristics used for

describing lifestyle or behavior may themselves not have strong

direct associations with common features of brain functional

connectivity. It is possible the level of description provided by

functional connectomic analyses may relate more closely to

emergent cognitive traits (such as attentional control) or latent

features (as implied by the CCA analysis).

However, improving the predictive power of correlations be-

tween functional connectomics and other subject characteris-

tics for individual subjects also will require methods that allow

for topological variation in networks between individuals

(Wang et al., 2015). A recent report from Jbabdi’s group

described a way of defining individual differences in task-asso-

ciated network mappings using resting-state fMRI data (Tavor

et al., 2016). Briefly, a functional parcellation was performed

at the group level using resting-state data from 98 subjects in

the HCP dataset in order to define ‘‘seeds’’ for functional con-

nectivity mapping. A ‘‘dual’’ regression analysis was performed

in which the summary cortical map for the group first was used

as a regressor to define time series in individual datasets, and

then, in a second step, these were used to define individual

spatial maps. These maps were then used (in addition to a

handful of structural features) to predict individualized task ac-

tivations. A ‘‘leave one out’’ approach prevented circularity in

this analysis. Results showed that their method could define

qualitative differences (shape, position, size, and topography)

of networks between individual subjects. These differences

were validated in several instances for functional networks

identified by task-based fMRI. Clear examples of topological

variability between individuals were demonstrated (Figure 2).

There are many ways in which this (or related) approaches

could be extended to allow exploration of population modes

of variation in associations between functional connectivity

and cognitive, behavioral, or lifestyle measures, extending the

kinds of associations proposed in the Smith et al. or Rosenberg

et al. reports.



Figure 2. Topological Heterogeneity in
Functional Networks between Healthy
Volunteers
Jbabdi et al. developed a model that predicted
functional connectomic topological variability be-
tween subjects for networks associated with a
range of task-related cognitive states (Tavor et al.,
2016). In each row, thresholded, task-related ac-
tivations are shown for a representative hemi-
sphere (red) with superimposedmodel predictions
for the network based solely on the resting-state
fMRI (yellow). Individual topological heterogeneity
is apparent for both the task-associated and
the predicted network activations. The model
captures this variation well, demonstrating that the
network architecture is a trait embeddedwithin the
resting-state brain activity. Punish, punishment
condition; TOM, theory of mind task; WM, working
memory; 2BK, two-back task. Image provided
courtesy of Dr. S. Jbabdi, Centre for Functional
Magnetic Resonance Imaging of the Brain,
University of Oxford.
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More richly descriptive approaches such as that proposed by

Jbabdi and his colleagues also may be needed to encompass

more extreme variations in brain function triggered by disease

or injury. This could allow quantitative definition of concepts

such as functional ‘‘degeneracy’’ (in which brain networks have

multiple pathways for realizing the same output) to refine predic-

tions of outcome after acute brain injury (Noppeney et al., 2004;

Tononi et al., 1999). A similar approach could make the clinical
concept of ‘‘resilience’’ to neuropatho-

logical change—which is important on

an individual level for predicting future

disease onset (in the case of observations

before symptoms) or rates of disease

progression (when disease already

is manifest)—physiologically meaningful

(Reijneveld et al., 2007). A persuasive

illustration of how symptoms and signs

of disease worsen as adaptive changes

in brain activity responsible for functional

resilience fail with the progression of pa-

thology is provided by a recent longitudi-

nal study of functional connectivity in

people with multiple sclerosis (Fleischer

et al., 2016).

Implications of Network

Metastability for Understanding

Human Variation in Health and

Disease

Models relating functional connectomics

to clinically relevant variations in cogni-

tive state or behavior can be extended

in other ways. Theoretically, variations in

networkmetastability and synchrony pro-

vide optimal conditions for different as-

pects of information processing (Friston,

2000). Dynamic network models thus

may provide better discriminants of indi-

vidual variation. Time-varying correla-
tions among nodes have been reported to explain a greater

amount of associated behavior than do stationary measures

(Madhyastha et al., 2015).

An example of this class of phenomena pertains to how time-

dependent changes in synchrony across networks support

relational integration, the process by which task rules are com-

bined into higher-order constructs during reasoning. In a recent

study, integration task demands elicited increases in functional
Neuron 91, August 3, 2016 515



Figure 3. Convergence of Pathological
Activities and Connectivities within Fronto-
Parietal Networks
(A) During contingency reversal learning, a
network of brain regions including the lateral or-
bitofrontal cortex, extending through the lateral
fronto-polar cortex, and including the posterior
middle frontal gyrus and parietal cortex bilaterally
is hypoactivated in individuals with obsessive
compulsive disorder (Chamberlain et al., 2008).
This same network also is hypoactivated in first-
degree relatives of the patients when compared to
matched controls, forming an endophenotype.
(B) Pathological gamblers show hypoactivation
within a similar set of frontal and parietal brain
regions during spatial planning (Grant et al., 2013).
This hypoactivation is normalized by dopami-
nergic medication, although the normalization
effects on behavior are modulated by COMT
genotype.
(C) During performance of the same planning task,
retired professional American football players
show hyperactivation and hypoconnectivity within
a similar network of frontal and parietal brain
regions (Hampshire et al., 2013).
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connectivity within and between lateral frontal cortical networks

(Parkin et al., 2015). Similarly, individual differences in motor

response inhibition relate more closely to dynamic interactions

between the nodes of multiple fronto-parietal networks than to

the magnitudes of event-related activations at particular nodes

(Erika-Florence et al., 2014). A directly clinical application

showed how dynamic functional interactions between salience

and default mode networks explain important aspects of syn-

dromes following closed head injury (Hellyer et al., 2015; Jilka

et al., 2014).

If differences in such global network interactions play domi-

nant roles in population variation in cognitive ability or with pa-

thology underlying specific types of cognitive impairments,

then nodes that drive these broader network activities should

be major determinants of this variation. Considerable evidence

already has shown that injury to the more highly connected

network hubs is most closely associated with impairments after

brain injury (Crossley et al., 2014). Furthermore, abnormal func-

tional activity and connectivity of a similar lateral fronto-polar

cortex region that is associated with relational reasoning is

also associated with executive impairments in a variety of clinical

populations, including obsessive compulsive disorder patients

(Chamberlain et al., 2008) and individuals who have repeatedly

suffered sports-related traumatic brain injuries (Hampshire

et al., 2013) (Figure 3). A logical extension of this concept is

that these network ‘‘hub’’ nodes provide optimal targets for

magnetic and electronic therapeutic neurostimulation intended

to improve cognition through normalization of global network

dynamics or to enhance recovery of lost functions by facilitating

re-learning.
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Inferring Molecular Determinants
from Network Level Descriptions
Functional imaging provides endophe-

notypes reflecting traits that can be me-

asured quantitatively and reliably. The
conceptual proximity of these endophenotypes to neurobiolog-

ical mechanisms enhances their potential to aid in the discovery

of new molecular determinants of diseases. Although efforts to

date have predominantly been more for hypothesis generation

than validation, there is encouraging evidence that specific

genetic variation in population behavioral traits or disease is

reflected in differences in functional connectivity states or

traits (Filippini et al., 2011; Hariri, 2009; Thompson et al., 2013,

2014).

The basis for optimism about this approach is that brain

structure is highly heritable, consistent with neurodevelopmental

predictions (Chen et al., 2012). Properties of resting-state net-

works show some heritability, although there is a substantial

environmentally determined component (Fu et al., 2015; Glahn

et al., 2010). Differences in network functional architecture also

appear modestly heritable (Sinclair et al., 2015), consequences

of which may relate to the heritability of intelligence (Deary

et al., 2009). Heritable differences may even be associated

with population variability in the transient activation states of

functional networks associated with cognitive tasks (Koten

et al., 2009). An fMRI twin study of digit working memory tasks

illustrates this latter point. It was observed that individuals who

activated frontal-parietal networks during the task responded

faster than those who activated language-related brain net-

works. These population differences in processing states were

shared between twin pairs. More generally, preliminary research

indicates that task-related network activation and connectivity

are highly heritable (Blokland et al., 2011). However, the heritabil-

ity of macroscopic features of brain structural and functional

connectivities may differ, e.g., heritable factors influencing



Figure 4. Brain Functional Network Hubs
Are Common Lesion Sites in Brain Disorders
Well-connected (metabolically highly active)
network hubs are more likely to be primary regions
affected in brain disorders (Crossley et al., 2014).
A literature meta-analysis localized MRI lesions
associated with 26 clinical brain disorders, which
were mapped onto nodes in the normal human
brain structural connectome. On the left, nodes of
the normative connectome are represented in a
standard anatomical space. On the right, they are
shown in a spiral, with nodes having similar
numbers of connections in the network arranged in
the same circle, along a spiral arranged so that its
tip includes those nodes with greatest numbers of
connections. The sizes of the nodes reflect their
numbers of connections. The colors reflect their
relative likelihood of parts of lesions identified in the
literature meta-analysis (red if >25% and%50% of
their volume includes a lesion, yellow for >50%)
and colored according to the proportion of voxels,
which are generically lesioned, i.e., the percentage

of lesion voxels each node comprises. The strongest 0.1% of edges between nodes also are shown to highlight the high connectivity between nodes near the
apex. Image provided courtesy of Dr. N.A. Crossley and Prof. E. Bullmore, Department of Psychiatry, University of Cambridge; this figure originally appeared in
Crossley et al., 2014 and is reused by permission of Oxford University Press.
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default-mode functional connectivity and gray-matter density

are distinct (Glahn et al., 2010).

In a few instances, specific genetic factors that determine the

activity of functional connectional networks have been defined.

Initial attempts to do this focused on candidate genes, e.g., for

testing how variations in dopamine transporter and catechol-

O-methyltransferase genotypes influence variations in dopa-

mine transmission and how this impacts on the fMRI activity of

brain regions that are involved in the anticipation and reception

of reward (Dreher et al., 2009) or in planning and attentional con-

trol (Williams-Gray et al., 2007, 2008). However, with the power

afforded by larger datasets, first steps have been taken toward

larger-scale discovery, with unbiased searches based on

genome-wide analyses, e.g., for functional activation associated

with ambiguous face presentation (Dickie et al., 2014). As data

from larger study populations become available, more studies

of disease or pathological traits undoubtedly will be undertaken.

With the mounting evidence that functional connectivities are

meaningfully sensitive to environment and experience, as well

as to genetic determinants, functional connectomics provides

a tool for exploring interactions between nature and nurture,

e.g., for understanding how BDNF polymorphisms interact with

exercise to influence hippocampal connectivities or how life

stress modulates effects of serotonin transporter genotype on

amygdala and hippocampal resting activations (Canli et al.,

2006). The availability of very large datasets, including clinical

phenotypic functional connectomic and genetic data from

diverse populations, could make it possible to move beyond

the identification of associations to determination of causal

influences using methods such as Mendelian randomization

(Debette et al., 2014).

Emerging Clinical Applications Arising from Functional
Connectomics
Despite this potential, the sole (relatively) widely accepted, more

routine use of fMRI in clinical medicine is as an adjunctive diag-

nostic for localization of eloquent cortex to support neurosur-
gical planning to lower risks of functional deficits after temporal

lobe or tumor resections (Matthews et al., 2006; Peck et al.,

2009; Pittau et al., 2014). While, strictly speaking, these methods

have relied more on the localization of regional activation than on

connectomics, efforts to improve their predictive potential have

brought extensions that include explicit characterization of func-

tional networks (e.g., see Jbabdi et al., 2013).

More generally, functional connectomics has had substantial

impact in neurology and psychiatry by advancing understanding

of disease course, potential mechanisms responsible for the ef-

ficacies of interventions, and population heterogeneity. It also is

contributing to emerging clinical concepts, particularly for early

disease risk assessment and for personalized medicine.

Selected illustrations of this will be discussed below.

From Focal Mapping to Global Consequences of

Localized Brain Pathologies

Less obvious than applications for functional mapping have

been the influential clinical insights that have arisen from the

use of fMRI functional connectomics for network-based

modeling of the distributed consequences of localized neuropa-

thology. This has been most widely explored in patients after

stroke (Grefkes and Fink, 2014). These efforts have illustrated

that localized brain injuries have effects that are distributed

widely across otherwise intact brain regions. The integrity of

wider brain regions and the nature of these distributed effects

can have important implications for cognition and behavior after

the local injury (Fornito et al., 2015). This understanding forms the

core of a modern reconciliation of localist and distributed views

of brain functional organization.

Graph metrics provide a useful way of describing these phe-

nomena (Sporns, 2015). A broad range of studies have empha-

sized how the functional impact of damage (e.g., from stroke

[Vá�sa et al., 2015] or traumatic brain injury [Fagerholm et al.,

2015]) depends on local connectional topology: ‘‘centrality’’

(the influence that any node has on other network components)

is a major predictor of the behavioral impact of damage to a

brain region. Symptomatic lesions brain disorders are more
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likely to be localized to such hub nodes (Crossley et al., 2014)

(Figure 4).

Similarly, the potential contributions of intact brain regions to

functional recovery after local injury or disease can be under-

stood in terms of their functional connectivities. Highly con-

nected, less functionally specialized hub nodes in the prefrontal

cortex and parietal cortices are most likely to show compensa-

tory activity in response to remote dysfunction (in a task-depen-

dent manner). Appreciation of roles for such hubs in learning

(Floyer-Lea and Matthews, 2005; Toni and Passingham, 1999)

provides a basis for network models of brain ‘‘resilience’’ or

‘‘functional reserve,’’ e.g., with functional recovery after stroke

(Crofts et al., 2011). Direct demonstrations of functional

compensatory roles for such remotely recruited regions were

described with behavioral monitoring of effects of transcranial

magnetic stimulation (TMS) inhibition on the secondarily re-

cruited regions after stroke (Johansen-Berg et al., 2002;

O’Shea et al., 2007).

‘‘Functional reserve’’ hypotheses imply that with loss of con-

nectivity from disease or injury in some network pathways, there

are compensatory increases in the connectivity of others. Dis-

ease expression depends not just on the direct impact of disease

or injury, but also on the integrity and potential of preserved brain

regions to support adaptive compensation. Graph theoretical

network models also can explain how disease emerges as a

result of multiple ‘‘hits,’’ none of which independently would be

symptomatic (Reijmer et al., 2015). This has provided an influen-

tial heuristic for understanding disease risk or expression more

generally with diffuse pathologies, such as with other forms of

multi-focal small vessel ischemic disease (Schaefer et al.,

2014b), multiple sclerosis (Faivre et al., 2016), or traumatic brain

injury (Sharp et al., 2014). Individual differences in functional

connectional architectures have been associated with individual

differences in susceptibility or expression of disease (Kehagia

et al., 2010; Nettiksimmons et al., 2014).

Functional Connectomics and the Development of New

Treatments for Brain Disease

These concepts underpin emerging opportunities for more rapid

progress in the use of fMRI functional connectomics to guide

the discovery, development, and personalized applications of

bioelectronic interventions (Sale et al., 2015). For example,

maladaptive increases in the activity of M1 cortex ipsilateral

to a hemiparetic hand after focal injury are found with loss of

transcallosal inhibitory input from the injured cortex. This not

only can be associated with the emergence of ‘‘mirror’’ move-

ments in the contralateral hand when the hemiparetic hand is

moved, but may more generally lead to a reciprocal increase in

inhibition of the injured cortex (Grefkes and Fink, 2014). Charac-

terization of this dual mechanism is leading to new concepts for

treatment that involve both enhancing function of the injured tis-

sue and suppressing activity in healthy regions of brain that may

inihibit any residual function of the damaged brain. For example,

repetitive TMS can inhibit healthy motor cortex contralateral to a

stroke to reduce inter-hemispheric inhibition (Kirton et al., 2010).

While still speculative, the strategy may be more effective if it is

combined with interventions intended to promote adaptive

plasticity in the injured brain, e.g., by delivering excitability-

enhancing intermittent theta burst TMS to the lesioned hemi-
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sphere contralateral to ‘‘prime’’ the motor cortex before rehabil-

itation training periods (Volz et al., 2016).

Predictivemodels to guide development of these interventions

have been a welcome recent development. An early effort

demonstrated that the spatial distribution and magnitude of

resting-state connectivities predict the pattern and magnitude

of the distributed cortical-evoked potentials elicited after sin-

gle-pulse electrical stimulation of the brain with intracranial elec-

trodes (Keller et al., 2011). Subsequently, Pascual-Leone and

colleagues (Fox et al., 2014) provided a compelling description

of a general approach to relating the anatomy of targeting of

deep brain stimulation (DBS) to that of non-invasive methods

such as TMS and tDCS. They showed that functional connec-

tional maps derived from fMRI could be used to relate targets

for non-invasive stimulation with those of DBS in common net-

works. The sites at which delivery of an inhibitory non-invasive

stimulation (cathodal transcranial direct current stimulation or

low-frequency TMS) proved beneficial tended to correlate posi-

tively with the DBS site, whereas those at which an excitatory

stimulation was beneficial correlated negatively. With validation,

this strategy could provide a rational, general route for personal-

ized targeting of non-invasive interventions.

An example of how these concepts could be extended for dis-

covery of new bioelectronics treatment targets is provided by the

functional connectivity characterization of levodopa-induced

dyskinesias (Cerasa et al., 2015). Patients with or without levo-

dopa-induced dyskinesias were contrasted. Connectivity of

the right inferior frontal cortex with the left motor cortex was

decreased, while that to the right putamen was increased, in

the dyskinetic patients. This abnormal pattern of connectivity

was evident only during the ‘‘on’’ phase of levodopa treatment

and the degrees of the alterations were correlated with motor

disability. The analysis suggested that repetitive TMS applied

to the right inferior frontal cortical region could reduce dyskinesia

even with a supramaximal dose of levodopa.

With growing confidence in their interpretation, functional con-

nectivity measures also are being applied cautiously as pharma-

codynamic biomarkers in clinical trials. In some instances, they

enable early decision-making more rapidly and confidently

even with small numbers of subjects. For example, early-phase

stroke trials have been notoriously difficult to design because

of heterogeneity among patients and the insensitivity of clinical

measures to change. A multimodal model incorporating behav-

ioral and fMRI measures predicted treatment-induced changes

in gait velocity in a clinical trial setting, suggesting a potential

use of fMRI measures as more precise biomarkers predictive

of treatment response (Burke et al., 2014). Modeling also may

be able to predict risks of adverse events with treatments, e.g.,

for the development of dyskinesias in people treated for Parkin-

son’s disease (Herz et al., 2016). A notably elegant recent func-

tional network meta-analytic model of the effects of a range of

analgesics on brain functional connectomics used machine

learning to demonstrate how generalizable inferences could be

made to infer clinical effects of a novel therapeutic from pharma-

codynamics assessed using multi-study functional connectom-

ics data (Duff et al., 2015).

Integration of fMRI measures with other modalities may

add explanatory power. For example, fMRI and simultaneous
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electroencephalogram (EEG) recordings were used to discover

functional correlates of cognitive impairment after smoking

cessation inaPhase IVclinical trial evaluating thecognitiveeffects

of nicotine replacement in habitual smokers (Beaver et al., 2011).

Positron emission tomography (PET) molecular imaging can

also be combined with fMRI, relating target occupancy directly

to functional connectomic measures of pharmacodynamic

responses. In another example from our own work, the pharma-

cology of two m-opioid antagonists was contrasted, and antago-

nist-dependent modulation of food reward brain salience mea-

sures were demonstrated with use of [11C]carfentanil PET (for

determining target occupancy by the experimental molecules)

in conjunction with an fMRI paradigm based on presentation of

selected images of food. This efficient design simultaneously al-

lowed dose dependence of target occupancy and its influence

on activation of a food salience network to be demonstrated.

Similar approaches provide insights concerning the mecha-

nisms of action of widely used drugs influencing modulatory

neurotransmitter signaling. Widely projecting modulatory neuro-

transmitter systems influence information transfer within or be-

tween brain networks. For example, age-related impairment in

dopaminergic modulation with reduction of striatal D1 receptor

density is correlated positively with lower dorsolateral PFC con-

nectivity to the right parietal cortex and negatively with that

between the medial PFC and right parietal cortex during a

memory task (Rieckmann et al., 2011). Opposing neuromodula-

tory effects of dopamine agonist and antagonist effects were

found on functional interactions between specific subcortical re-

gions and corresponding neocortical ‘‘resting-state’’ networks

known to be involved in distinct aspects of cognition and reward

processing. Relative to placebo, levodopa and haloperidol

challenges, respectively, increased or decreased the functional

connectivity between the midbrain and the default mode

network, a right caudate and a right-lateralized fronto-parietal

network, and the ventral striatum and a fronto-insular network

(Cole et al., 2013a). A single dose of a serotonin reuptake inhib-

itor dramatically alters functional connectivity throughout the

whole brain in healthy subjects (Schaefer et al., 2014a).

Cholinergic modulation currently is one of the major phar-

maco-therapeutic options for mild to moderate Alzheimer’s dis-

ease. Increases in functional network connectivity of the left

fusiform face area (FFA) and both the hippocampus and inferior

frontal cortex, as well as enhanced functional network connec-

tivity between the FFA and hippocampus, were associated

with donepezil treatment that improved response times in tests

of face or scene memory (Pa et al., 2013). The pervasiveness

of effects was shown in an earlier study demonstrating enhance-

ment of the intrinsic FC across the whole medial cholinergic

pathway network in the parahippocampal, temporal, parietal,

and prefrontal cortices (Li et al., 2012). Underlying nicotinic re-

ceptor-mediated mechanisms were evaluated using a nicotine

challenge, which was shown to increase network local effi-

ciency, a parameter that estimates the network’s tolerance to

local errors in communication (Wylie et al., 2012).

Identifying Brain Functional Pathology before the

Clinical Expression of Disease

Functional connectomics defines endophenotypes that could

contribute to the early diagnosis or characterization of disease
before its clinical expression. Although Huntington’s disease

(HD) can be diagnosed genetically in people at risk before the

onset of symptoms, current methods for predicting the (highly

variable) age of disease onset are imprecise. More accurate pre-

diction of disease onset is important to patients. It also is critical

to the design and implementation of pre-symptomatic interven-

tion trials. This preclinical population displays a progressive

pathology with an evolving pattern of weakening fronto-striatal

connections, reflecting the primary pathology and strengthening

frontal-posterior connections believed to represent compensa-

tory responses as disease burden increases (Harrington et al.,

2015). Combining these may better predict the onset of symp-

toms. The measures also may help understand and predict

differences in symptoms expressed by different people. Deficits

in performance measures of executive dysfunction can be

related to whole-brain connectivity disturbances from nodes

known to mediate executive control (right inferior parietal, right

thalamus, and left anterior cingulate). Evidence for compensa-

tory brain activity with degenerative brain structural changes

came with observation of correlated increases in functional

coupling between the right dorsolateral prefrontal cortex and

over a left hemisphere network in the resting state (Klöppel

et al., 2015). Multivariate combinations of functional and

structural connectomic measures may provide a useful endo-

phenotype for biological staging of HD and other pre-symptom-

atic neurodegenerative diseases.

People with autosomal dominant Alzheimer’s disease (ADAD)

show reductions in resting-state ‘‘default mode’’ connectivity

some years before expected symptom onset. Similar relation-

ships between changes in network connectivity and cognitive

dementia ratings have been found for late-onset Alzheimer’s

disease (LOAD) (Thomas et al., 2014). With the increasing

availability of data from large populations (e.g., the Alzheimer’s

Disease Neuroimaging Initiative [Weiner et al., 2015], the Con-

sortium for Reliability and Reproducibility [Zuo et al., 2014],

the HCP [Barch et al., 2013], IMAGEN [Schumann et al., 2010],

UK Biobank [Sudlow et al., 2015]) who display a range of traits

or symptoms and include people before manifestation of dis-

ease, rapid growth in this area can be expected. A recent predic-

tion model based on longitudinal changes in functional network

architectures highlights the predictive power that already can be

achieved using imaging measures alone (Chen and Herskovits,

2015).

Reductions in network connectivity with healthy aging help to

explain why aging is such a powerful risk factor for Alzheimer’s

disease. Decreases in functional connectivity are found between

the hippocampus and posteromedial cortex, including the pre-

cuneus, with clinically healthy aging (Wang et al., 2010). This

reduction is accelerated with development of Alzheimer’s dis-

ease (Dennis and Thompson, 2014). Inter-network coupling

also is reduced with aging and correlated with behavioral

impairments of memory (Spreng and Schacter, 2012) in ways

qualitatively similar to but quantitatively less profound than in

Alzheimer’s disease (Brier et al., 2012). Resting-state functional

connectomic changes have been suggested as a risk marker,

as well as for monitoring the progression of ADAD (Chhatwal

et al., 2013). Together, these examples illustrate the more gen-

eral point that functional connectivity measures can provide
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continuous descriptors of pathophysiology that link susceptibil-

ity to preclinical pathology and early expression of disease.

Toward Development of a Biologically Based Nosology

for Brain Disease

The impact of connectomics and other biologically based mea-

sures on the way in which psychiatric disease is conceptualized

and managed could be substantial. It has been recognized for

some time that pathologically distinct disorders may not be

distinguished well by the clusters of symptoms used currently

to define neuropsychiatric diseases. Current diagnostic frame-

works risk obscuring biological relationships between disorders,

and this nosological obfuscation is slowing therapeutic ad-

vances (Krystal and State, 2014). The rapid growth in evidence

for specific biological determinants of different clinical outcomes

has supported efforts to move toward development of a more

biologically based nosology of disease (Rubinov and Bullmore,

2013). The need for new nosological concepts also is suggested

by recognition of common behavioral features for diseases that

are currently classified as distinct but that share common asso-

ciations with altered functional connectivity. Groups of diseases

sharing common symptoms all may be associations with pa-

thologies of the same brain functional systems. For example,

diseases associated with deficits of executive function are asso-

ciated with lesions of the lateral prefrontal-cingulate-parietal

network, some presenting with pathological arousal and vigi-

lance have been associated with altered patterns of connectivity

in corticolimbic circuits, and those with impaired motivational or

hedonic responses commonly show abnormal fronto-striatal

connectivities. As discussed above, there already are proofs of

principal for how biologically based reclassifications might

contribute to better disease understanding. For example, the

identification of the common networks involving limbic networks

in depression and anxiety disorders or dopaminergic networks

for reward responses in addictions and impulse control

disorders have provided a foundation for understanding their

co-morbidities, as well as paths toward the development of

new treatments (Krystal and State, 2014). Reconsidering

neuropsychiatric diseases in terms of psychopathological do-

mains that can be described in terms of associated functional

connectomic networks promises an attractive heuristic. This

also is contributing to a new consensus regarding their

biological foundations that should enable more accurate diag-

nosis, assessment of risk, and prediction of responses to treat-

ment. The U.S. National Institute of Mental Health has provided

strong impetus for this through its Research Domain Criteria

Initiative (RDoC), which sets out a vision for the study of mental

disorders that involves integration of levels of information drawn

all of the way from molecular to patient-reported data (NIMH,

2016).

Such a reformulation could fundamentally change the way

mental disorders are viewed by shifting from a categorical

conception to one in which measures (e.g., functional connectiv-

ities) of their defining mental traits are expressed in terms

of continuous, multidimensional variables. This would likely

emphasize that component biological determinants of

mental disorders merely reflect extremes in the population distri-

butions of brain functional states. This should have profound im-

plications regarding indications for treatment. Just as is being
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considered for later-onset neurodegenerative diseases, it could

lead to personalizing early interventions for people at higher risk

of some diseases in order to delay or prevent their onset, for

example.

A paradigmatic example of the first steps toward this

approach is provided by schizophrenia. A range of analyses de-

fines how functional networks mediating higher cognitive

processes are disrupted in people at risk of schizophrenia

(Dauvermann et al., 2014). For example, young people at very

high risk of developing schizophrenia have increased connectiv-

ity in the salience network linking anterior fronto-insular and

anterior cingulate cortex relative to healthy volunteers at low

risk. The magnitude of these differences is correlated with

behavioral abnormalities prodromal to schizophrenia (Pelletier-

Baldelli et al., 2015). Insight into how these effects could be

mediated comes from a network model suggesting that the

salience network may play a central role in switching between

global brain connectivity states (Palaniyappan et al., 2012).

There is increasingpotential to extendcomputationalmodeling

as an explanatory bridge between altered cognitive function and

its associated neurobiological mechanisms (Dauvermann et al.,

2014). This enables framing of quantitative causal hypotheses

in terms of the molecular mechanisms. One class of methods in-

volves dynamic causal modeling, which includes biophysical

data priors that describe component neuronal dynamic pro-

cesses. These can be applied in deterministic or Bayesian frame-

works that can test the model and set precise hypotheses based

on simulations with relevant network perturbations. Network

modeling also allows mechanistic understanding to be linked

across molecular, synaptic, and systems levels and to be refined

as newdata is acquired for each; scale-free networkmodels inte-

grated across levels of organization can relate molecular and

cellular changes to functional connectivities, symptoms, and so-

cial context. Looijestijn and colleagues have summarized their

work on this topic recently and proposed an illustrative synthesis

that relates neural circuit attractor networks to positive symptom

generation in schizophrenia. With their model, they explain ac-

tions of current anti-psychotics and suggest new treatments

through stabilization of desirable attractor network states in neu-

ral circuits (Looijestijn et al., 2015). The utility of the model lies in

the potential to motivate experiments that test key features and,

ideally, provide a quantitative framework for their interpretation.

The concept is being generalized (e.g., The Virtual Brain [Sanz-

Leon et al., 2015], the Blue Brain Project [Markram et al., 2015])

in other laboratories with incorporation of an increasingly wide

range of molecular data in brain functional connectomic models.

With causal models linking network activity to factors such as the

balance of excitatory and inhibitory neuronal circuit activity and

neurotransmitter-mediated changes in neuronal membrane ionic

conductivities), fMRI functional connectomic changes can be

characterized more confidently in terms of the underlying physi-

ological phenomena. Creatingmulti-level networks that addition-

ally relate functional connectomics to models of symptoms (and

signs) creates an informative endophenotype ‘‘bridge’’ between

molecular determinants and disease expression. This provides

a conceptual path to understanding the clinical meaningfulness

of potential pharmacological perturbations or biomarker mea-

sures related to disease risk.
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Contextual and Conceptual Limitations for Clinical

Applications of Functional Connectomics

Applications of functional connectomics to clinical problems also

have made clear the limitations and the context dependence of

inferences from functional connectomics. These problems are

well illustratedby results fromstudies of pain andconsciousness.

These studies have stimulated important debates about their

best clinicalmanagement, but also have highlighted fundamental

challenges to the interpretation of their functional connectomic or

other physiological correlates.

A Physiological Basis for Assessing Pain

The subjective experience of pain cannot directly be measured

independent of reports from the person experiencing it. How-

ever, assessment of pain is widely important in clinical practice,

including in situations when patients cannot reliably provide

report themselves. Functional connectomic characterizations

of network activity associated with acute or chronic pain have

contributed to changes in clinical awareness of pain—especially

chronic pain—in people who cannot report it well. While fMRI re-

mains relatively expensive and may not itself be practical for

routine monitoring of pain and responses to treatment in the

clinic, brain activity in people with dementia (Cole et al., 2006)

(or infants [Slater et al., 2010]) is no less responsive to noxious

stimuli than that in healthy adults, despite often lower behavioral

responses to the stimuli from patients (or infants) than is seen

with healthy adults. Indeed, Alzheimer’s disease patients show

greater amplitude and duration of pain-related fMRI activity in

sensory, affective, and cognitive processing networks than do

volunteers without dementia, consistent with more sustained

attention to the noxious stimulus (Cole et al., 2006). People

with Alzheimer’s disease typically have been administered fewer

analgesics. This and related research has provoked greater

concerns for analgesia (and alertness to secondary markers of

discomfort) even among such patients who are unable to reliably

report pain.

fMRI connectivity provides ‘‘signatures’’ of transient functional

network states associated with the quality, intensity, and

emotional salience of pain (Coghill, 2010; Wager et al., 2013).

For example, quantitative measures of pain relating connectivity

changes within the default mode network provide a way of

objectifying this (even in people with chronic pain) as abnormally

increased functional coupling of the medial prefrontal cortex to

the insula (Baliki et al., 2014). This work has contributed influen-

tially to understanding the pathophysiology of alerting mecha-

nisms related to chronic pain. Consequently, fMRI connectomic

measures have been proposed as biomarkers of treatment

response (Borsook et al., 2013; Duff et al., 2015). However, the

recent demonstration of similar brain patterns of activation in

healthy subjects and in people with genetic mutations conferring

insensitivity to pain suggests that the associated functional

connectional networks do not themselves represent pain

specifically, but instead reflect consequences of highly salient

somatosensory inputs such as pain (Salomons et al., 2016). In-

terpretations therefore must be context specific.

Insights into Conscious Awareness

A second application further illustrating limitations of functional

connectomic associations with subjective or internal states is

provided by consciousness. Disorders of consciousness tradi-
tionally have been difficult to classify except in terms of associ-

ated diseases or observed behaviors. Functional connectomics

provides a new approach to their characterization based on their

physiological correlates.

At the basis of much recent work has been evidence that many

types of complex perceptions show consistent enough patterns

of brain activation between people to enable internal mental

states to be reliably inferred from patterns of brain activity, allow-

ing ‘‘decoding’’ of thoughts, at least to a limited extent (Haxby

et al., 2014). The application of this logic in the context of disor-

ders of consciousness has expanded clinical appreciation for

environmental awareness in some apparently unresponsive

patients. Laureys, Owen, and colleagues identified brain regions

activated in healthy volunteers after verbal instructions to

perform specific types of tasks during mental imagery (e.g.,

spatial navigation or playing tennis). Patients previously diag-

nosed as being in persistent vegetative or minimally conscious

states were assessed in the same way. A first case report

showed that meaningful patterns of regional activation could

be observed in association with appropriate verbal instructions

to engage in mental imagery in one such patient (Owen et al.,

2006). The authors interpreted this as evidence for conscious

awareness and suggested that the patient (and potentially

others) had been misdiagnosed as vegetative; they argued that

this patient should more accurately be considered as being

‘‘locked in’’ and consciously aware.

In a subsequent report, potential experimental biases with this

simple study design were addressed. A larger cohort of patients

was asked to respond to simple questions (the correct answers

towhich the experimenter was blinded) using alternative forms of

mental imagery to respond either yes or no. The authors gener-

alized their conclusion by demonstrating that �10% of the

patients could respond accurately. This was interpreted as evi-

dence for (at least transient) awareness (Monti et al., 2010).

These results highlight potential limitations of usual diagnostic

practices. However, the application of fMRI to such ethically

significant clinical decisions also provokes reflection on the

methodological limitations of the approach. False negatives

seem likely; not even all healthy controls show ‘‘typical’’ patterns

of regional activation during mental imagery. In part this may be

explained by the intrinsically low signal-to-noise ratio, but as dis-

cussed above, it also likely reflects population heterogeneity in

mental imagery strategies or traits. Even if technical false nega-

tives were better controlled, the information from this single

testing approach could be misleading with patients who may

have some degree of awareness, but are unable to engage

receptive language or other specific networks needed to perform

the task.

Interpretation of fMRI also can lead to false positives if distinc-

tions between evidence for conscious awareness and the more

limited evidence for activity in individual component processes

(as networks) that correlate individually with conscious aware-

ness are not made appropriately. As patients with blindsight

have shown, brain activations (and behaviors) can occur in

response to stimuli, with or without conscious awareness (Per-

saud et al., 2011). Imagery responses to simple commands

and questions may result from learnt perception-action cou-

plings rather than consciousness per se (Greenberg, 2007;
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Nachev and Husain, 2007). Contents of working memory also

can affect behavior without awareness (Soto and Silvanto, 2014).

More fundamentally, although awell-preservedminimal global

brain energetic state seems to be a necessary condition for con-

sciousness, isolated network activations probed using fMRI do

not reflect the global activity and energy state of the brain (Shul-

man et al., 2009; Dehaene et al., 1998). High global energy utili-

zation enables the high global information transfer that sustains a

regulated metastability. In this context, consciousness is distin-

guished from its contents by the potential for the coordinated

dynamic activity that enables shifts in brain and mental states.

Nonetheless, the functional connectomic studies have had an

important impact on the field. They are leading to new develop-

ments for patient assessment. For example, Rosanova et al.

extended the results and developed a more practical tool for

routine clinical applications using a lower-cost bedside electro-

encephalography in conjunction with TMS (Rosanova et al.,

2012). With more complete clinical follow-up, they provided ev-

idence for the potential clinical value of functional testing by

showing that patients who retained distributed network re-

sponses associated with preserved effective connectivity were

more likely to show subsequent recovery. In a conceptual

extension of this, another group has shown that an index of

consciousness can be derived from measures of complexity in

electrocortical responses to TMS perturbation that is able to

distinguish states of consciousness in healthy subjects and in

patients with minimal levels of consciousness after partial recov-

ery from coma (Casali et al., 2013).

Such complex, multivariate functional connectomic bio-

markers (and, potentially, their fMRI equivalents) that reflect

more global network dynamics may limit both false negative

and false positive results. Much needs to be learned, but

together these reports illustrate some of the conceptual and

practical challenges for translation of concepts derived from

research fMRI for medical applications. Clinical utility then de-

pends on their robustness, the feasibility of consistent imple-

mentation at different centers, and the availability of long-term

follow-up data concerning the relationships between measures

and clinical outcomes. A challenge for the future must be to

move beyond passive stimulation paradigms to capture more

direct evidence for bothmeaningful and context-relevant internal

transformations of perception reflecting conscious awareness.

Adjudication of the criteria for the paradigm and responses

needs to be made in ways analogous to those suggested by

Turing for recognition of intelligent behavior in amachine (Turing,

1950).

Conclusions
This review has highlighted some of the ways in which the last

two decades of applications of fMRI functional connectomics

have contributed to modern concepts of brain disease and its

treatment. While the range of routine clinical applications has

not progressed since one of us last reviewed the area in 2006,

substantial clinical impact has been realized from fMRI functional

connectomics through applications in research contexts. We are

optimistic that some of this work will lead to new diagnostic

methods and the development of new treatments. Areas that

seem particularly promising include applications that support
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decision-making in the development of new drug candidates

or that guide the targeting of bioelectronic interventions for novel

indications. Over the longer term, we anticipate that functional

connectomics also could contribute to early disease risk assess-

ment and to stratification of neuropsychiatric patients for their

improved management.

Meeting the Challenges Posed by Functional

Connectomics in Medicine

Nonetheless, in addition to the need to address the conceptual

limitations of the approach as described above, there are tech-

nical challenges for the field if sustainable progress is to be

made. Many of these have been summarized in a neuroimaging

consensus statement regarding best practices that was

published recently (Nichols et al., 2015). Foremost is the need

for reliably high-quality data. Signal to noise is low in fMRI.

Physiological noise, motion, and instrumental confounds all

contribute artifacts that must be accounted for appropriately or

removed (Vá�sa et al., 2015; Beckmann and Smith, 2004; Niko-

laou et al., 2015). This can be particularly challenging when

such factors differ between datasets being compared, e.g.,

motion artifacts had proportionally greater influence on the

youngest subjects in a study of functional connectomic changes

with aging (Power et al., 2014). Greater spatial resolution should

enhance the potential to discriminate closely spaced network

mappings, but with the tradeoff of longer gradient readout time

(and potentially greater image distortions) unlessmore advanced

echo planar imaging (or other) sequences are used.

A more fundamental limitation of the fMRI functional connec-

tomics is that it provides only an indirect measure of neuronal

electrophysiological activity. The signal reflects neurovascular

responses and tissue metabolism (Hillman, 2014), which may

vary with the contrast independently of the neuronal activity.

These effects may dominate in some situations, e.g., Filippini

and his colleagues described apparently increased default

mode network activity in people carrying the APOE4 allele rela-

tive to non-carriers (Filippini et al., 2009), but later reported that

much or all of this reflected vascular contributions (Suri et al.,

2015). Neurovascular coupling may vary quantitatively across

brain regions (Devonshire et al., 2012; Lauritzen et al., 2012),

although this has been difficult to characterize precisely. While

the BOLD response may largely reflect the extracellular field po-

tential (Logothetis, 2002), the relationships are complex and

influenced strongly by differences in the balance of excitatory

and inhibitory inputs (Lauritzen et al., 2012). BOLD-based fMRI

measures of functional connectivity alone thus provide a rela-

tively qualitative index. In addition, response times are slow rela-

tive to electrophysiological changes, although a much wider

temporal spectrum of signal correlations are accessible than is

commonly recognized (Niazy et al., 2011).

A number of investigator practices have compounded these

problems. The magnitude of effects is often not well reported

and is typically low. Many studies also have not been sufficiently

large for confidence in their conclusions (Button et al., 2013).

Complicating this has been the perhaps too frequent reporting

of results arrived at only after considerable uncontrolled explora-

tion of the same dataset, so that the reported measures of

confidence are unreliable. Highly multivariate analyses also

may be difficult to interpret biologically with the information
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available, so that, even if well conducted, statistically significant

results may not have obvious meaningfulness in a neurobiolog-

ical or clinical context.

Fortunately, the field is maturing and each of these problems

can be addressed in some way. Improvements in MRI acquisi-

tion methods and instrument stability have dramatically

enhanced the quality of fMRI data since first reports. We antici-

pate additional technical advances in imaging. Integration of

other physiological MRI approaches with fMRI can report on

specific elements of the neurovascular response, such as blood

flow assessed using arterial spin labeling (Bulte et al., 2012), to

enhance measurement precision and interpretability. There has

been a strong focus on developing robust methods for integra-

tion of EEG with fMRI (see, e.g., Larsen and O’Doherty, 2014)

to provide greater sensitivity to rapid, transient phenomena

(Lee et al., 2013). Supported particularly by new, integrated

MRI-PET scanners, there is greater potential to directly relate

fMRI functional connectomics to PET markers of local energy

metabolism or neurotransmitter signaling. Such ‘‘chemo-con-

nectomics’’ would allow, e.g., anatomical distributions of drug

targets and their engagement by a candidate drug to be related

directly to changes in brain functional connectomics (Aiello et al.,

2016; Carbonell et al., 2014) in individual subjects. Given

the need to resolve detail in nested network structures (as in

the prefrontal cortex), such work would be enhanced by the

improvements in fMRI resolution and sensitivity promised by

ultra-high-field MRI (Moerel et al., 2014).

Scientific culture and practice also are maturing in encour-

aging ways. The community has recognized the need for more

robust, replicable results. Considerations for study design and

analyses have been summarized recently by an expert group

(Poldrack et al., 2016). There is a positive and increasing trend

toward data sharing. The importance of making this the standard

of practice cannot be overstated. Reports based on data from

large-scale initiatives already are beginning to effect this change

by ‘‘raising the bar’’ for all studies (Matthews and Sudlow, 2015).

Open access quality control software could further contribute by

providing benchmark metrics for datasets. Standardized, auto-

mated tools are needed to allow researchers to meet minimum

data standards and recognize factors that might compromise

the reliability of their connectomic data early.

Major improvements in data analytics will continue to drive

much of the field forward, although deriving novel and clinically

meaningful information from increasingly large datasets will de-

mand analytical strategies that preserve both sensitivity and

interpretability. Direct correlational strategies will be of increas-

ingly limited value as numbers of variables rise or for simulta-

neous evaluations of multiple networks. Machine learning can

be highly optimized, but specific interpretations or validations

of factors driving classifications are complicated by their intrinsi-

cally ‘‘black box’’ nature. Attractive complementary methods

employ generative forward models based on prior information

(Moran et al., 2011). The former logically inform hypotheses

that guide progression for development of the latter. In any

case, depending on the specific application, different trade-

offs will need to be made between the extent of feature space

search, biological interpretability, sensitivity, and computational

efficiency. Applications intended to characterize promising bio-
markers should be extended toward their qualification, particu-

larly with efforts to validate the relationship between a measure

and a clinically relevant concept of interest (Castellanos et al.,

2013). An important element for all of these efforts remains to

be able to relate population-level descriptions to observations

in individual subjects. For this, further development of individu-

ally precise, generalizable functional anatomical descriptors

will be needed.

There arechallenges, but it is hard tooverstateour optimism for

this growing field of inquiry. Current science promises much—

and new directions undoubtedly will deliver much more—even

over the near to medium term. We believe that advances in

fMRI spatial and temporal resolution and more powerful ap-

proaches to information mining from multivariate datasets

(particularly with incorporation of molecular imaging data for

chemo-connectomics) hold great promise. All of these develop-

ments should fuel discovery and foster novel approaches to

disease risk prediction, personalization of patient management,

and thedesign of new interventions to improve clinical outcomes.
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